Cogent Logic Ltd.

High Quality Hands-On Training
for
Software Developers

Copyright © 2013 Cogent Logic Ltd.

Summer 2003 Cryptography Training Events

Cryptography for Java Developers runs in central London on:

* Wednesday 26 June 2013
* Saturday 29 June 2013

Cryptography for C Developers runs in central London on:

* Wednesday 10 July 2013
* Saturday 13 July 2013

To register for these courses, please:

* Follow the link at www.cogentlogic.com/L.ondon or
» Call freephone: 08000 438 478

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

http://www.cogentlogic.com/London
http://www.cogentlogic.com/London

e 1 Introduction to Cryptography

e 2 Cryptographic Service Providers

3 Symmetric Key Cryptography

e 4 Symmetric Key Cryptography for Android and i0OS
e 5 Asymmetric Key Cryptography

e 6 Digital Signatures

e 7 Authenticated Encryption

e 8 Digital Certificates

e 9 PKI

e 10 Key Stores and Trust Stores

e 11 SSL and TLS (JSSE)

e 12 Accessing LDAP Servers with JNDI

e 13 Certificate Revocation Lists and OCSP

e 14 Privilege Management Infrastructure

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

 Android Training Courses

* Developing Mobile Applications with Android is for Java programmers
wishing to get up to speed on Android development.

e Software Development with Java is for programmers wishing acquire a
thorough grounding in Java.

e 10S Training Courses

o Developing Mobile Applications with 108 is for Objective-C programmers
wishing to get up to speed on iOS development.

e Software Development with Objective-C is for programmers wishing acquire
a thorough grounding in Objective-C.

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Ruby on Rails Training Courses

o Developing Web Applications with Ruby on Rails is for Ruby programmers
wishing to get up to speed on Rails development.

e Software Development with Ruby is for programmers wishing acquire a
thorough grounding in Ruby.

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e What Is JNI and Why Use It?

e Compiling C-C++ Programs

e Writing C Functions and C++ Methods Callable From Java
e Compiling C-C++ Programs with Eclipse

e Mapping Strings and Other Data Types

e Accessing Java from C-C++

e Exception Handling

e SWIG

e Using Standard C Libraries and Open Source Libraries
e JNIwith Android--NDK

e Using Native APIs

e Debugging Native Code in Eclipse

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

What Is JNI and Why Use It?

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e WhatlIs JNI?
e Why Use JNI?
e Whatis the Process for Using JNI?

e JNI Documentation

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

What Is JNI?

e The Java Native Interface is a technology that enables Java developers
to call C and C++ software from Java programs

e Asynchronous calls are possible with C/C++ calling back into Java

e JNI has been part of the Java platform since 1997

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Why Use JNI?

e |NIis useful for:

e (alling C/C++ libraries that off functions not available in Java,
e.g. telephony, sound, graphics (images, 2D /3D animation, physics)

e (alling platform-native code, e.g. Windows Registries
e Re-using an existing corporate/organisation code base in C/C++
e Improving the performance of compute-bound Java code

e Incorporating Java solutions (JVM) into C/C++ projects

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

What is the Process for Using JNI?

 To make use of JNI we simply:

e Write C/C++ code intended to be called from Java; this is often
purpose-built Java-access code, e.g.

e InJava, declare and call native methods that call into C/C++, e.g.
e Compile the C/C++ code into a library, e.g.
 Load the library into the Java program at runtime, e.g.

e Compile and run the Java program

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

JNI Documentation

e The official source for JNI documentation is:

docs.oracle.com/javase/7/docs/technotes/guides/jni/

e The book The Java Native Interface Programmer’s Guide and
Specification is available in print and as a free web download that Sun
used to provide but Oracle seem not to, so search for it online!

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Compiling C/C++ Programs

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Compiling C/C++

e GNU Compiler Collection
e GCConMacOSX

e GCC on Linux

e GCC on Windows

e Sample Java Program

e Sample C Program

e Sample C++ Program

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Compiling C/C++

e (Cand C++ source code typically comprises:

e One or more implementation file(s), with file name extensions
.c and . cpp, respectively

e Associated header file(s) with . h file name extension
e The collection of source code files must be:
e Compiled into object code
e Linked with zero or more libraries into a final library or executable

e JNIJava code calls into one or more libraries:
.0 files on Unixes (Linux and Mac OS X), .dll files on Windows

e Tool collections, like a compiler plus a linker are known as a toolchain

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

GNU Compiler Collection

e GNU C Compiler (GCC) was originally developed by Richard Stallman
for use with the GNU Project, a free Unix-like operating system

e (GCC has since grown to support C++, Obj-C, Java and more; it is now
known as the GNU Compiler Collection and is available from:
gcc.gnu.org

e (GCC is available for:

e Mac OS X as an optional Xcode component, Command Line Tools
e Linux with up2date, yum or apt-get, as applicable to the distro

e Windows with MinGW (not Cygwin because it targets Cygwin)

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

GCCon MacOS X

e To install GCC on Mac OS X through Xcode:
e Xcode menu, Preferences..., Downloads tab, Components tab

e Select Command Line Tools and click the Install button

e To Install GCC on Mac OS X without Xcode, download the Command
Line Tools from:

developer.apple.com/downloads/index.action?=
Command%20L1ine%20To0ls%20%2805%20X%20Mountain%20Lion%29

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

0 ® Downloads

Ge 'S ronts & .,"_ > & o > &
|| Check for and install updates automatically | Check and Install Now |
@ Command Line Tools (146.4 MB) Update _ J
U8 i0S 6.0 Simulator Installed
U@ iOS 5.1 Simulator (614.5 MB) _Install
U iOS 5.0 Simulator (554.1 MB) (_ Install)
U i0S 4.3 Simulator Installed

=1 |

Before installing, note that from within Terminal you can use the XCRUN tool to launch compilers and other tools
embedded within the Xcode application. Use the XCODE-SELECT tool to define which version of Xcode is active. Type
“man xcrun® from within Terminal to find out more.

Downloading this package will install copies of the core command line tools and system headers into system folders,
including the LLVM compiler, linker, and build tools.

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

® OO0 Downloads "

‘ Developer Technologies Resources Programs Support Member Center (Q search Developer)
Downloads for Apple DeVEIOperS Hi, Dave Cardwell | My Profile | Sign out
(Q Command Line Tools (OS X Mount < 1-80f8 Page| 1]of1
Description Release Date v
Categories

™ Applications (12) ¥ Command Line Tools (OS X Mountain Lion) for Xcode - April 20* Apr 15. 2013

@ Developer Tools (198)

o 05 (15 This package enables UNIX-style development via Terminal by installing Command Line Tools (OS X Mountain Lion)
i0S (15) command line developer tools, as well as Mac OS X SDK frameworks and for Xcode - Aprl 2013
™ 0sX(113) headers. Many useful tools are included, such as the Apple LLVM compiler, .dmg(112.96 MB)
linker, and Make. If you use Xcode, these tools are also embedded within the
v 0Os X server (52) Xcode IDE, and can be installed on your system using the Downloads

preferences pane within Xcode 4.6.2.
™ safari (3)

» Command Line Tools (OS X Mountain Lion) for Xcode - March 2(Mar 14, 2013
» Command Line Tools (OS X Mountain Lion) for Xcode - January Feb 9, 2013
» Command Line Tools (OS X Mountain Lion) for Xcode - Novemb Nov 1, 2012

» Command Line Tools (OS X Mountain Lion) for Xcode - October Oct 3, 2012

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

GCC on Linux

e First, check for the presence of GCC by entering gcc --version then,
if GCC is absent, install it

 To install GCC on Red Hat Enterprise, enter up2date gcc
e For CentOS / Fedora Core, enter yum install gcc
e For Debian / Ubuntu, enter sudo apt-get install gcc
e Similarly, for the C++ compiler:
e (Check for the C++ compiler by entering g++ --version

e I[fnecessary, install, e.g. sudo apt-get install g++

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

OO M jeff@jeff-SATELLITE-L775-11F: ~

jeff@jeff-SATELLITE-L775-11F:~$ gcc --version

gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3

Copyright (C) 2011 Free Software Foundation, Inc.

This i1s free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

jeff@jeff-SATELLITE-L775-11F:~$ g++ --version
The program 'g++' can be found in the following packages:
* g++
* pentium-builder
Try: sudo apt-get install <selected package>
jeff@jeff-SATELLITE-L775-11F:~$ |}

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

OO jeff@jeff-SATELLITE-L775-11F: ~

jeff@jeff-SATELLITE-L775-11F:~$ sudo apt-get install g++
[sudo] password for jeff:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
g++-4.6 Llibstdc++6-4.6-dev
Suggested packages:
g++-multilib g++-4.6-multilib gcc-4.6-doc libstdc++6-4.6-dbg libstdc++6-4.6-doc
The following NEW packages will be installed
g++ g++-4.6 libstdc++6-4.6-dev
® upgraded, 3 newly installed, © to remove and 208 not upgraded.
Need to get 8,615 kB of archives.
After this operation, 25.4 MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
Get:1 http://gb.archive.ubuntu.com/ubuntu/ precise/main libstdc++6-4.6-dev amd64 4.6.3-1ubuntu5 [1,66
® kB]
Get:2 http://gb.archive.ubuntu.com/ubuntu/ precise/main g++-4.6 amd64 4.6.3-1ubuntu5 [6,954 kB]
Get:3 http://gb.archive.ubuntu.com/ubuntu/ precise/main g++ amd64 4:4.6.3-1ubuntu5 [1,442 B]
Fetched 8,615 kB in 10s (828 kB/s)
Selecting previously unselected package libstdc++6-4.6-dev.
(Reading database ... 142534 files and directories currently installed.)
Unpacking libstdc++6-4.6-dev (from .../libstdc++6-4.6-dev_4.6.3-1ubuntu5_amd64.deb) ...
Selecting previously unselected package g++-4.6.
Unpacking g++-4.6 (from .../g++-4.6_4.6.3-1ubuntu5_amd64.deb) ...
Selecting previously unselected package g++.
Unpacking g++ (from .../g++_4%3a4.6.3-1ubuntu5_amd64.deb) ...
Processing triggers for man-db ...
Setting up g++-4.6 (4.6.3-1ubuntus) ...
Setting up g++ (4:4.6.3-1ubuntus) ...
update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode.
Setting up libstdc++6-4.6-dev (4.6.3-1ubuntus)
jeff@jeff-SATELLITE-L775-11F:~$ |}

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

GCC on Windows

e To install GCC on Windows, use Minimalist GNU for Windows

MinGW) f (W .
(MinGW) from www.mingw.org For 64-bit support, see:

_ mingw-w64.sourceforge.net
e Download the installer from: /

sourceforge.net/projects/mingw/files/
Installer/mingw-get-inst/

e.g. mingw-get-inst-20120426.exe

e The C++ compiler is not installed by default, so select it (there is no
need to install MSYS)

e Several components will downloaded from through a shell script

e Manually add C:\MinGW\bin to the PATH environment variable

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

B MinGW - Minimalist GNU x |

& = C | [sourceforge.net/projects/mingw/files/Installer/mingw-get-inst/ o7
| Java Platform Stand... ‘ bouncycastle.org % Spectral series of hy.. ¢ SquirrelMail 1.4.22 »

Home / Browse / Development / Build Tools / MinGW - Minimalist GNU for Windows / Support

MinGW - Minimalist GNU for Windows

A native Windows port of the GNU Compiler Collection (GCC)

Brought to you by: cstrauss, cwilso11, earnie, keithmarshall

Summary Files Reviews Support News Wiki Mailing Lists Tickets~+ Git~

Looking for the latest version? Download mingw-get-inst-20120426.exe A
Select Components
Home / Installer / mingw-get-inst Choose which optional components of MinGW to install (the C compiler is always
Name * Modified ¢ Size ¢ netaled)
4 Parent folder (=] MinGW Compiler Suite

- [¥] ¢ compiler

B mingw.get inst 20120426 2012-04-27
- [_] Fortran Compiler

- [_] objC Compiler

- [] Ada Compiler

B minaw-aet-inst-20120421 2012-04-22

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Sample Java Program

 Let'slook at compilation and execution of a simple Java program

package com.cogentlogic.training.jni;

public class Factorial

{
public static int evaluate(int n)
{
return n == 1 ? 1 : n * evaluate(n - 1);
}
public static void main(String[] args)
{
if (args.length == 1)
System.out.println(Factorial.evaluate(
Integer.parselnt(args[0])));
}
}

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e We compile and execute the Java program in the usual way:

javac -d bin -sourcepath src
src/com/cogentlogic/training/jni/Factorial. java

java com.cogentlogic.training.jni.Factorial 30

e OO0 (] bin — bash — 109x36

Jeffreys-MacBook-Pro:Java Jeff$ ls

bin src

Jeffreys-MacBook-Pro:Java Jeff$ javac -d bin -sourcepath src src/com/cogentlogic/training/jni/Factorial.java
Jeffreys-MacBook-Pro:Java Jeff$ cd bin

Jeffreys-MacBook-Pro:bin Jeff$ java com.cogentlogic.training.jni.Factorial 30

1409286144

Jeffreys-MacBook-Pro:bin Jeff$

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Sample C Program

e Here is an equivalent program in C:

#include "Factorial.h”

#include <stdio.h> // printf
#include <stdlib.h> // atoil

int factorial(int n)

{ return n ==1 ? 1 : n * factorial(n - 1);
}

int main(int argc, const char **argv)

{

// Should be two arguments: the command and the parameter
if (argc != 2)
return -1;
int nFactorial = factorial(atoi(argv[1l]));
printf("%d\n", nFactorial);
return 0;

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e We typically need a C header file:

#ifndef FACTORIAL H_
#define FACTORIAL H_

int factorial(int n);
#endif /* FACTORIAL H */

e To compile the C source code Factorial.c in to the object code
file Factorial.o:

gcc -0 Factorial.o Factorial.c

e To execute the C program on Mac/Linux:
./Factorial.o 30

e To execute the C program on Windows:
.\Factorial.o 30 (or Factorial.o 30)

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Sample C++ Program

e Here an equivalent program in C++:

#include "Factorial.h”

#include <stdlib.h> // atoi

#include <iostream> // std::cout, etc.
Factorial::Factorial()

{

}

Factorial::~Factorial()

{

}

int Factorial::evaluate(int n)

{ return n == 1 ? 1 : n * evaluate(n - 1);
}

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e (C++ code continued):

int main(int argc, const char **argv)

{

// Should be two arguments: the command and the parameter
if (argc != 2)
return -1;

Factorial* factorial = new Factorial();
int nFactorial = factorial->evaluate(atoi(argv[1l]));

std::cout << nFactorial << std::endl;

return 9;

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

 We typically need a header file:

#ifndef FACTORIAL H_
#define FACTORIAL H_

class Factorial

{
public:

Factorial();
virtual ~Factorial();
int evaluate(int n);

}s
ttendif /* FACTORIAL H_ */

e To compile the C++ source code Factorial.cpp in to the object code
file Factorial.o:

g++ -0 Factorial.o Factorial.cpp

e To execute the C++ program:
./Factorial.o 30

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Writing C Functions and C++ Methods
Callable from Java

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e JNI Code
e (alling C from Java

e (alling C++ from Java

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

INI Code

e Java Native Interface documentation can be found at:
docs.oracle.com/javase/7/docs/technotes/guides/jni

e JNIrequires C and C++ functions to be named as follows:

Java_<package name> <Java_class _name> <function name>
where <package name> contains underscores in place of periods

e For example, for a Java class called Test in the package test.greet

needing to make a call to a native method it knows as greeting, the C/

C++ function is named:
Do not put underscores

Java test greet Test greeting in Java class names!

e (C++ functions must be exposed with C linkage using extern "C"

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Calling C from Java

e Sample C header file: (MathsC.h)

#ifndef MATHSC H_
#define MATHSC H_

#include <jni.h>

JNIEXPORT jint JNICALL
Java_com_cogentlogic _training jni_Mathsl fibonacci(INIEnv*,
jobject,
jint);

#endif // MATHSC H_

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

 Sample C implementation file: (MathsC.c):

#include "MathsC.h"

int fib(int n)
{

// FO = 0; F1 =1

// Fh = Fn-1 + Fn-2 for n > 1

return n <=1 ? n : fib(n - 1) + fib(n - 2);
}

JNIEXPORT jint JNICALL
Java_com cogentlogic training jni Mathsl fibonacci(INIEnv* penv,
jobject obj,
jint n)
{

return fib(n);

¥

e This code needs to be compiled then linked as a library

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The Java code loads the library and calls its native method(s),
e.g. (Mathsl.java)

package com.cogentlogic.training.jni;

public class Mathsl

{
static
{
System.loadlLibrary("MathsC");
}

public native int fibonacci(int n);

public static void main(String[] args)

{
if (args.length == 1)
{
Mathsl mathsl = new Mathsl();
System.out.println("" +
mathsl.fibonacci(Integer.parselInt(args[0])));
}
}

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e To compile MathC.c on Mac OS X:

gcc -I/System/Library/Frameworks/JavaVM. framework/Headers
-0 MathsC.o -c MathsC.c

-c means ‘compile only’
The -I option specifies the location of jni.h

e TolinkMathC.o on Mac OS X:
gcc -shared -o libMathsC.jnilib MathsC.o

The generated library must be named 1ib<name>.jnilib where <name>
is referenced by the Java code

e Torun Maths1.java on Mac OS X, compile the class:

javac -d bin -sourcepath src
src/com/cogentlogic/training/jni/Mathsl. java

then enter:
java com.cogentlogic.training.jni.Mathsl 30

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e To compile and link MathC. c on Linux (tested on ubuntu 12.04 LTS):

gcc -fPIC -I/usr/lib/jvm/java-7-oracle/include
-I/usr/1lib/jvm/java-7-oracle/include/linux
-0 libMathsC.so -shared MathsC.c

x86-64 architectures require Position Independent Code for shared
libraries, hence, the use of -fPIC

e Torun Maths1.java on Linux, compile the class:

javac -d bin -sourcepath src
src/com/cogentlogic/training/jni/Mathsl. java

then enter:

java -Djava.library.path=./ com.cogentlogic.training.jni.Mathsl 30

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e To compile and link MathC.c on Windows (32- and 64-bit) using 32-bit
GCC and 32-bit Java*:

gcc -Wall -D INI IMPLEMENTATION -WI1,--kill-at
-I"C:/Program Files (x86)/Java/jdkl.7.0 21/include"
-I"C:/Program Files (x86)/Java/jdkl.7.06 21/include/win32"
-shared -o MathsC.dll MathsC.c

x86-64 architectures require -m64

e Torun Maths1.java on Windows, compile the class:

"C:\Program Files (x86)\Java\jdkl.7.0 21\bin\javac" -d bin
-sourcepath src src/com/cogentlogic/training/jni/Mathsl.java

then enter:

"C:\Program Files (x86)\Java\jdkl.7.0 21\bin\java"
com.cogentlogic.training.jni.Mathsl 30

* From java.sun.com, download Windows 32-bit JDK as the version
Windows x86, e.g. jdk-7u21-windows-1586.exe

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Calling C++ from Java

e Sample C header file: (MathsCPP.h)

#include <jni.h>
class MathsCPP

{

public: #ifndef MATHSCPP_H
int fib(int n); omitted for lack of space

}s

#ifdeft cplusplus
extern "C" {
#endif

JNIEXPORT jint JNICALL
Java_com cogentlogic training jni Maths2 fibonacci(INIEnv*,
jobject, jint);
#ifdeft cplusplus

}
#endif

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Sample C++ implementation file: (MathsCPP.cpp):

#include "MathsCPP.h"

int MathsCPP::fib(int n)
{return n <=1 ? n : fib(n - 1) + fib(n - 2);}

#ifdef cplusplus
extern "C" {
#endif

JNIEXPORT jint JNICALL
Java_com _cogentlogic training jni_Maths2 fibonacci(INIEnv* penv,
jobject obj, jint n)

MathsCPP* mathsCPP = new MathsCPP();
int nFib = mathsCPP->fib(n);

delete mathsCPP;

return nFib;

}
#ifdef cplusplus

}
#endif

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The Java code loads the library and calls its native method(s),
e.g. (MathsZ.java)

package com.cogentlogic.training.jni;

public class Maths?2

{
static
1
System.loadLibrary("MathsCPP");
¥

public native int fibonacci(int n);

public static void main(String[] args)

{
if (args.length == 1)
{
Maths2 maths2 = new Maths2();
System.out.println("" +
maths2.fibonacci(Integer.parselInt(args[0])));
}
}

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e To compile MathCPP.cpp on Mac OS X:

g++ -I/System/Library/Frameworks/JavaVM. framework/Headers
-0 MathsCPP.o -c MathsCPP.cpp

-c means ‘compile only’
The -I option specifies the location of jni.h

e TolinkMathCPP.o on Mac OS X:
g++ -shared -o libMathsCPP.jnilib MathsCPP.o

The generated library must be named 1ib<name>.jnilib where <name>
is referenced by the Java code

e Torun MathsZ2.java on Mac OS X, compile the class:

javac -d bin -sourcepath src
src/com/cogentlogic/training/jni/Maths2.java

then enter:
java com.cogentlogic.training.jni.Maths2 30

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Compiling C/C++ Programs with Eclipse

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Adding C/C++ to Eclipse
e Java and C/C++ with Eclipse
e Linux-Specific Details

e Windows-Specific Details

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Adding C/C++ to Eclipse

e Various Eclipse packages are available from:

www.eclipse.org/downloads/
 You can choose a package that supports both Java and C/C++
e Toadd C/C++ support to a Java-based version of Eclipse:
e SelectInstall New Software..from the Help menu

e Selectthe releases software site,
e.g. Juno - http://download.eclipse.org/releases/juno

e SelectC/C++ Development Tools under Programming Languages

e (lick the Next > button twice, accept the license then click Finish
Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

http://download.eclipse.org/releases/juno
http://download.eclipse.org/releases/juno

W O T ———— | 1 | - —— _ . .
Available Software
Check the items that you wish to install.
Work with: Juno - http://download.eclipse.org/releases/juno v | [Add... J

Find more software by working with the "Available Software Sites” preferences.

:/ .
| type filter text |

Name Version

| (00 Modeling

(=] W 000Programming Languages

() r?cf:LAutotools support for CDT 3.0.1.201302132326
O (4 C/C++ Call Graph Visualization 1.1.0.201302051708
o Q_&C/C++ Development Tools 8.1.2.201302132326
J r?-E:LC/O!»«« Development Tools SDK 8.1.2.201302132326
() ff:LC/C-H- Library APl Documentation Hover Help 1.0.0.201302051708
() @C/C++ Unit Testing Support 7.0.0.201302132326
O L4 CDT Visual C++ Support 1.0.0.201302132326

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e OO0 " Install

Install Details l u
Review the items to be installed. \p)

.
Name Version Id
v 5&?: C/C++ Development Tools 8.1.2.201302132326 org.eclipse.cdt.feature.groug
L}E:C/C++ Development Platform 8.1.2.201302132326 org.eclipse.cdt.platform.feat
QE: C/C++ DSF GDB Debugger Integration 4.0.1.201302132326 org.eclipse.cdt.gnu.dsf.featu
ff!: C/C++ GNU Toolchain Build Support 8.1.1.201302132326 org.eclipse.cdt.gnu.build.fea
QE: C/C++ GNU Toolchain Debug Support 7.1.1.201302132326 org.eclipse.cdt.gnu.debug.fe
Qf!: CDT Common GDB Support 7.0.0.201302132326 org.eclipse.cdt.gdb.feature.c

e Finally, from the Window menu select Open Perspective followed by
Other...

e Select the C/C++ perspective

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java and C/C++ with Eclipse

 You can create separate Java and C/C++ projects and import the C/C++
library into the Java project

e You will most likely want to use a combination Java/C/C++ project!

e The general procedure is:
e (reate a]ava project with Java source code
e Add C/C++ source code in its own folder, e.g. jni
e Convert the project to a mixed Java and C/C++ project

e (Configure settings to have Java load the C/C++ library

e The following procedure applies to Mac OS X...

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Here aJava project has been created and a class has been added:

[Package Explorer 83 = 0 [J] Maths.java 3
[jiﬁg package com.cogentlogic.training.jni;
VID'JvMaths
v (8 src public class Maths
' : P {
v . I . . .
) com cogern ogic.training.jni . static
» [J] Maths.java {
» =i, JRE System Library [JavaSE-1.7] System. loadLibrary("Maths");
}

public native int fibonacci(int n);

- public static void main(String[] args)

{
if (args.length == 1)
{
Maths maths = new Maths();
System.out.println("" + maths.fibonacci(Integer.parselnt(args[0])));
}
}

}

e The Maths class is similar to Maths1 seen earlier

e The library will be called Maths, similar to MathsC seen earlier

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e (reate afolder to hold the C/C++ code, here called jni:

J
e L &)ava Project

com.co GO Into = Project...
» [J] Matl _

b =i JRE Systen OPe€N in New Window 8¢ Package
Open Type Hierarchy) F4 & Class
Show In T #EW I & Interface
= Copy $C G Enum
== Copy Qualified Name @ Annotation
% Paste ¥V &% Source Folder
¥ Delete ® 19 Java Working Set

Rammnue fraom (Cantovt N 9e

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e AddaCheaderfile and a C or C++ implementation file:

% Package Explorer £3 = 0
=R-Y
VIbJMaths
¥ (B src

¥ £} com.cogentlogic.training.jni
» |J] Maths.java
» =, JRE System Library [JavaSE-1.7]
V(=]ni
.c| Maths.c
.c| Maths.h

\J] Maths.java \h| Maths.h .c] Maths.c 23

#include "Maths.h"

-int fib(int n)
{
// F@ = 0; Fl =1
// Fn = Fn-1 4+ Fn-2 for n > 1
return n <=1 ?2 n : fib(n - 1) + f

}

= // Java -- callable from Java
// com_cogentlogic_training_jni -- Jav
// Mathsl -- Java class name
// fibonacci -- Java method name

- JNIEXPORT jint INICALL Java_com_cogent
{

¥

return fib(n);

e These files are pretty much the same as MathsC.h and MathsC. c seen

earlier

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Convert the project

From the File menu, select New the Other. ..

Under C/C++, select Convert to a C/C++ Project

® OO0 New
Select a wizard —— >
Convertto a C/C++ Project f

Wizards:

(" type filter text

» (= General
Y(=C/C++
[T'|C Project
[/ C++ Project
(& Class

R

Convert to a C/C++ Project (Adds C/C++ Nature)

| “File from Template
(¥ Folder

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e (lickthe Next > button

e SelectShared Library then click the Finish button

® OO0 Convert to a C/C++ Project

Convert to a C/C++ project

The wizard adds C/C++ Nature to the selected projects to enable C/C++ Tools ‘ -
Support for them. It also converts old-style C/C++ projects to the new style.

Candidates for conversion:

@ =* Maths

Convertto Cor C++

() C Project

Project options

(s) C++ Project

@ Specify project type
Project type: Toolchains: |
(= Executable MacOSX GCC

(~ Static Library
(= Makefile project

#= Shared Library

Copyright © 2013 Cogent Logic Ltd.

| Select All |

MinGW GCC on Windows
Linux GCC on Linux

Sunday, 16 June 13

e The project will have C/C++ build errors because we have not specified
the JNI header files path

e Inthe project’s Properties, C/C++ General, select Paths and Symbols

e (Onthe Includes tab, select GNU C and click the Add. .. button

VYC/C++ General
» Code Analysis
Documentation

File Types m # Symbols = m Libraries = (= Library Paths = (3So

Formatter

Indexer Lan -
guages 0
Language Mappings Assembivil ® OO0 Add directory path -
Paths and Symbols GNUC
Preprocessor Include Pat CNU C++
Java Build Path ‘
» Java Code Style
» Java Compiler | Add to all configurations | Variables... | |

Directory:

»Java Editor | Add to all languages
Javadoc Location ' Workspace... |

Project References | (=Is a workspace path
Run/Debug Settings
> Task Repository
Task Tags
» Validation
WikiText

' File system... |

OK | Cancel |

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e C(lickthe Filesystem. .. button and navigate to the JNI header files path,

e.g. for Mac OS X, /System/Library/Frameworks/
JavaVM. framework/Headers

e (lick the OK button followed by the Apply button

e Accept the offer to rebuild the project then click the next OK button

L Includes Symbols) Libraries (™ Library Paths [Source Location L)
= . =

Languages [Include directories
Assembly i /System/Library/Frameworks/JavaVM.framework /Versions/A/Headers
CNU C
CNU C++

(if the path points to a symbolic link, it will be dereferenced, as here)

e For Linux,add: /usr/lib/jvm/java-7-oracle/include and
/usr/lib/jvm/java-7-oracle/include/linux

e For 32-bit projects on Windows, add:
C:\Program Files (x86)\Java\jdkl.7.0 21\include and

C:\Program Files (x86)\Java\jdkl.7.0 21\include\win32

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The C/C++ library will not have been built!

e Simply selectBuild Project from the Project menu and the C/C++
library will be generated

e The Java project does not know where to find the library
e In the project’'s Properties, Java Build Path, selectthe Libraries tab

e Open up the JRE entry and select Native library location

1 ® O 0O Properties for Maths
type filter text Java Build Path
» Resource
Builders | (BSource | [=3Projects
»C/C++ Build
b C/C++ General JARs and class folders on the build path:
Java Build Path ¥ =) JRE System Library [JavaSE-1.7)
»Java Code Style = Access rules: No rules defined

»Java Compiler
» Java Editor
Javadoc Location

& Native library location: (None)

o &3 resources.jar - /Library/Java/JavaVirtualMachines/jdk1.7.0_21.jdk/Conter
- b o rtiar - /lihrarv/lava/lavaVirtualMachines /idk1 7.0 21 idk/Cantents/Ham

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Add JARs...

e (lickthe Edit... button followed by the Workspace. .. button

e For adebug build, the C/C++ library is in the Debug folder under bin
:g:: (B_-‘:L:?. . l - 1ARs and class falders on the huild nath:

sa Build Pa Native Library Folder Configuration .

/a Code St

va Compil¢ Enter the location of a folder containing the native libraries used by 'JavaSE-1.7"

id External JARs

va Editor .
sadoc Lodl Location path: |] |~ External Folder... ,| :
oject Refej | Add Variable...
n/0.8.0.6 Native Library Folder Selection] mmlinnk:space - Y _
1Isk »Add Library...
1Sk 1 Choose a folder containing native libraries: 5
id , lass Folder.
] Vb‘JMaths g_d Class Folder
g [_C‘>.settings || OK | kternal Class Fo
» (= bin -
r.Debug . i b j'—J
> G jni ach.mesljdkl..7.0_ [Edit...
L vaVirtualMachines
P (=]ni IMachines /idk:
b G sre ltua. ac .lneslj . —T—
achines/jdk1.7.0_

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e You have just specified the java.library.path value!

JARs and class folders on the build path:
¥ =, JRE System Library [JavaSE-1.7]

i Access rules: No rules defined
& Native library location: Maths/Debug
» w0 resources.iar - /Librarv/lava/lavaVirtua

e You can now run or debug your application in the usual way

Run As

Debug As 1 Java Applet “XEDA
Profile As m 2 Java Application A \C%D]

Validate
Convert To... Debug Configurations...

Compare With =

(do this to create a launch configuration)

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Qur software requires a program argument

e Open up the Debug Configurations and enter a suitable parameter

e OO0 Debug Configurations

Create, manage, and run configurations
Debug a Java application

N _"l

AMER _JESE A Name: | Maths

type filter text & Main I(X)= Arauments\%“‘i = JRE

C/C++ Application ,
C/C++ Attach to Applicat rogram arguments.

C/C++ Postmortem DebL 30
C/C++ Remote Applicatic
] Java Applet
v [J] Java Application
~J | Maths
JuJUnit
= Launch Group VM arguments:
m2 Maven Build

-

% Classpath E‘

o] [o]

—
C

—
C

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e C(lick the Debug button and trace through the code

1J] Maths.java 23 |h| Maths.h | Maths.c

package com.cogentlogic.training.jni;

public class Maths

{
- static
{
System. loadLibrary("Maths");
}
public native int fibonacci(int n);
- public static void main(String[] args)
{
2 if (args.length == 1)
{
Maths maths = new Maths();
System.out.println("" + maths.fibonacci(Integer.parselnt(args[0])));
}
> }
}

El Console 53 v Tasks |5 Problems J Executables
Maths [Java Application] /Library/Java/JavaVirtualMachines/jdk1.7.0_21.jdk/Contents/Home/bin/java (7 Jun 2013 22:40:32)

832049

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Linux-Specific Details

e The preceding procedure works on Linux with a few configuration
changes (Unbuntu covered here)

e Firstly, if Eclipse is installed from the Ubuntu Software Centre, you
might get an Unsatisfied Link Error upon launching Eclipse.
To fix this for 64-bit software, at a command line, enter:
ln -s /usr/lib/jni/libswt-* ~/.swt/1lib/linux/x86_ 64/

e As mentioned earlier, specify the JNI header files, as:
/usr/lib/jvm/java-7-oracle/include and
/usr/lib/jvm/java-7-oracle/include/linux

e Remember to specify the -fPIC build option for the GCC compiler ...

 You must build the project from the Java perspective (not C/C++)

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

X Properties for Maths

& Settings
> Resource
Builders Configuration: | Debug [Active]

v C/C++Build
Build Variables

1)

Discovery Options & Tool Settings | #Build Steps Build Artifact | @ Binary Parsers | @ Error Parsers
Environment :

- v & GCC C++ Compiler Other flags |-c-fFmessage-length=0-fPIC
Logging e

(22 Preprocessor
& Includes

> C/C++G l 2 Optimization

enera - _ - B |

Java Build Path (= Debugging Position Independent Code (-FPIC)

> Java Code Style

> Java Compiler

> Java Editor
Javadoc Location
Project References
Run/Debug Settings

Settings " | Verbose (-v)

Tool Chain Editor || Support ANSI programs (-ansi)

2 Warnings
&2 Miscellaneous
v & GCC C Compiler
2 Preprocessor
2 Ssymbols
2 Includes
&2 Optimization
¢ Debugging N
& warnings
v & GCC C++Linker
& General
2 Libraries

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Windows-Specitic Details

e The preceding procedure works on Windows with a few configuration
changes

e Firstly, remember for 64-bit projects on Windows, MinGW-w64 and
the -m64 build flag are required

e We will consider 32-bit projects

e The Eclipse workspace must be configured to use a 32-bit JDK (or use
a 32-bit version of Eclipse): from the Windows menu select
Preferences then under the Java category select Installed JREs

e C(lickthe Add. .. button to add a JRE then click the Directory...
button to specify a path to a 32-bit JRE,
e.g. C:\Program Files (x86)\Java\jdkl.7.0 21

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

JRE Definition
Specify attributes for a JRE E

JRE home: C:\Program Files (x86)\Java\jdk1.7.0_21 Directory...

JRE name: jdk1.7.0_21

Default VM arguments: Variables...

JRE system libraries:

b g’?) C:\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\resources A | | Add External JARs...
>t C\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\rt.jar
> e C:\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\jsse.jar Javadoc Location...
> pa C:\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\jce jar

> 9 C:\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\charsets.j;
b @ C:\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\jfr.jar Remove
b C:\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\ext\acces:
b C:\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\ext\dnsns Up
b C:\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\ext\jacces
b C:\Program Files (x86)\Java\jdk1.7.0_21\jre\lib\ext\locale ,

< > Restore Default

Source Attachment...

Down

@

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Select the 32-bit JDK:

type filter text

A Vv VvV VvV VYV

>

A vV VvV VvV VvV VYV

General

Ant

C/C++

Code Recommenders
Help

Install/Update

Java

Appearance
Build Path
Code Style
Compiler
Debug
Editor
Installed JREs
Execution Environm
JUnit

Installed JREs

=T S

Add, remove or edit JRE definitions. By default, the checked JRE is added to the build path of newly
created Java projects.

Installed JREs:
Name Location Type Add..
= jdk1.... C:\Program Files (x86)\Java\jdk1.7.0 21 Standard VM ==
[] =hjre7 C\Program Files\Java\jre7 Standard VM -
Duplicate...
Remove
Search...

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e When creating a Java project, be sure to select the 32-bit JDK:

X

Create a Java Project

Create a Java project in the workspace or in an external location. @

Project name: Maths

V| Use default location

Location: D:\Jeff\JNI Training\Sample Code\Windows\EclipseWorkspace) Browse...

JRE
() Use an execution environment JRE: JavaSE-1.7 v
(® Use a project specific JRE: idk1.7.0_21 v
() Use default JRE (currently 'jdk1.7.0_21") Configure JREs...

Project layout

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e As mentioned earlier, specify the NI header files, as:
C:\Program Files (x86)\Java\jdkl.7.0 21\include and
C:\Program Files (x86)\Java\jdkl.7.0 21\include\win32

e The MinGM C++ Linker flags must be set:
-D IJNI IMPLEMENTATION -Wl,--kill-at
Open the project’s Properties, C/C++ Build category, Settings item.
Select the Tool Settings tab followed by the Miscellaneous item
under MinGW C++ Linker.
Add the flags to the Linker flags field.

e Finally, for the Maths sample code, the generated C/C++ library will be
called 1ibMaths.d11; in the Windows Java source code this must be
referenced with the preceding 1ib, i.e.

System.loadLibrary("libMaths");

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

type filter text

» Resource
Builders
a4 C/C++ Build
Build Variables
Discovery Options
Environment
Logging
Settings
Tool Chain Editor
a4 C/C++ General
» Code Analysis
Documentation
File Types
Formatter
Indexer
Language Mappings
Paths and Symbols
Preprocessor Include P:
Java Build Path
» Java Code Style
» Java Compiler
» Java Editor
Javadoc Location
Project References
Run/Debug Settings
» Task Repository
Task Tags
» Validation
WikiText

Settings

Configuration: |Debug [Active]

&3 Tool Settings

4 Build Steps

“" Build Artifact

Binary Parsers | €3 Error Parsers

a %) GCC Assembler
(%3 General
4 %) GCC C++ Compiler
(%3 Preprocessor
(33 Includes
(%3 Optimization
(%3 Debugging
(23 Warnings
(2 Miscellaneous
4 5 GCC C Compiler
(%3 Preprocessor
(23 Symbols
(33 Includes
(%3 Optimization
(%3 Debugging
(23 Warnings
(2 Miscellaneous
4 53 MinGW C++ Linker
(%3 General
(33 Libraries
@ Miscellaneous
(%3 Shared Library Settings

Linker flags

-D_INI_IMPLEMENTATION_ -WI,--kill-at

Other options (-Xlinker [option])

wil

I3

Other objects

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Mapping Strings and Other Data Types

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e NI Primitive Data Types

e The javah Tool

e The IJNIEnv Interface Pointer
e JNI Strings

e References to Java Objects

e Accessing Java Arrays

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

JNI Primitive Data Types

 Primitive data types can be passed to and returned from JNI methods
without difficulty

e jni.h defines machine-independent NI types’ that map to C types:

typedef unsighed char jboolean;
typedef unsigned short jchar;
typedef short jshort;

typedef float jfloat;

typedef double jdouble;

e These types correspond, respectively, to the Java data types:
boolean, char, short, float, double

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e jni md.h,included in jni.h, defines machine-dependent mappings:

#if defined(LP64) && LP64 /* for -Wundef */
typedef int Jjint;

#else

typedef long jint;

#endif

typedef long long Jjlong;

typedef signed char jbyte;

__LP64__ is set by the compiler to flag 64-bit builds
e These three data types map to Java data types int, long and byte

e jni.h makesuse of jint for the definition of jsize:
typedef jint Jjsize;

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

The javah Tool

e javah can be invoked from the command line to generate C/C++
prototype methods

e javahruns against a Java source code file, seeking native methods and
generating the corresponding C/C++ method declarations

e ForMaths.java containing public native int fibonacci(int n);
use:

javah com.cogentlogic.training.jni.Maths

which will generate com cogentlogic training jni Maths.h
containing:

JNIEXPORT jint JINICALL
Java _com_cogentlogic training jni_ Maths_ fibonacci
(JNIEnv *, jobject, jint);

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

The JNIEnv Interface Pointer

e The IJNIEnv interface pointer is always passed as the first argument to

a JNI native method and provides access to general-purpose methods,
e.g. GetJavaVM

 IJNIEnv provides support for string and management, array
operations, Java instance/static method/field invocation/access,
exception handling, reflection

e See JNIEnv documentation at:
docs.oracle.com/javase/7/docs/technotes/guides/
jni/spec/functions.html

 IJNIEnv is used for thread-local storage so it is not valid across threads,
i.e. it cannot be passed to another thread

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

IJNIEnv is used differently in C and in C++: env is a pointer to a C++
object that must be dereferenced in C

In C++, we can invoke methods straightforwardly:

JavaVM* jvm;
env->GetJavaVM(&jvm);

In C, env must be passed as the first parameter in each env call:

JavaVM* jvm;

* - ' ;
(*env)->GetJavavi(env, &jvm); Do not name C and C++ files the

same, e.g. X.c and X. cpp. If you do
then one of the files won’t be

(JavaVMis a reference to the Java Virtual Machine and can be used
across threads. JavaVM enables native threads to attach to the JVM.)

Copyright © 2013 Cogent Logic Ltd.

AN

Sunday, 16 June 13

JNI Strings

e Java String objects appear in JNI as jstring objects

e To make use of a jstring object (JVM string!) in C we must convert it
to a C string, typically with GetStringUTFChars (for UTF-8), e.g.

const char* pchName = env->GetStringUTFChars(strName, 0);

which returns @ for an out-of-memory condition
(the second argument is an optional pointer to a boolean that tells us
whether the returned string is a copy of the original string)

e When we have finished with such C strings we must release them, e.g.

env->ReleaseStringUTFChars(strName, pchName);

e Strings can be allocated for return to the Java code with NewString
(for Unicode) or NewStringUTF (see sample project Strings)

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

References to Java Objects

e JNI native methods always pass a reference object as a second
parameter

e For native instance methods, the object is a jobject that references
the Java object that invoked the method

e For native static methods, the object is a jclass references the Java
class that invoked the method

e These objects can be used to call instance/static methods in the calling
Java object/class and to access the instance/static fields

e More generally, Java objects can be passed as parameters to JNI
methods and their members can be accessed too

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Native types map to Java object types as follows:

jobject all objects

jclass java.lang.Class

jstring java.lang.String

jarray all arrays
jobjectArray Object]]
jbooleanArray boolean|]
jbyteArray bytel]
jcharArray char|[]
jshortArray short|[]
jintArray int]]
jlongArray long|]
jfloatArray float]]
jdoubleArray doublel]

jthrowable java.lang.Throwable

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Accessing Java Arrays

 Native methods can take arrays as parameters and return arrays
e We need to transform JVM array data to C array data before use
 We can simulate pass-by-value by using a copy of the Java array data

 We can simulate pass-by-reference by using a pointer to the Java array
data where possible

e In either case, we can choose to update the Java array data or leave it
unchanged!

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Sample Java code to manipulate arrays: (Arrays)

package com.cogentlogic.training.jni;

public class Arrays

{

// Forgetting to do this is one of several way to
// produce the UnsatisfiedLinkError exception!
static

{

}
private native float[] traverse(double[] dblA, float[] fB);

System.loadLibrary("Arrays");

public static void main(String[] args)

{
double[] dblA = {1.1, 2.2, 3.3};

float[] fB = {4.4f, 5.5f, 6.6F, 7.7f};

Arrays arrays = new Arrays();
float[] fC = arrays.traverse(dblA, fB);

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

 Sample Java code to manipulate arrays (continued):

System.out.println("dblA:");
for (int n=0; n<dblA.length; n++)
System.out.println(" " + dblA[n]);

System.out.println("fB:");
for (int n=0; n<fB.length; n++)
System.out.println(" " + fB[n]);

System.out.println("fC:");
for (int n=0; n<fC.length; n++)
System.out.println(” "+ fC[n]);

e javah com.cogentlogic.training.jni.Arrays generates:

JNIEXPORT jfloatArray JINICALL
Java_com_cogentlogic training jni_Arrays_traverse
(JNIEnv *, jobject, jdoubleArray, jfloatArray);

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

 Sample C code to manipulate arrays: (Arrays)

JNIEXPORT jfloatArray JNICALL
Java_com _cogentlogic training jni_ Arrays_traverse(JNIEnv* env,
jobject thiz, jdoubleArray dblA, jfloatArray fB)
{
int n;
// Get the lengths of the array parameters
jint nLenA = (*env)->GetArraylLength(env, dblA);
jint nLenB = (*env)->GetArraylLength(env, fB);

// Access a copy of the double array
jdouble dblAA[nLenA];
(*env)->GetDoubleArrayRegion(env, dblA, 0, nLenA, dblAA);

// Update the copy of the double array
for (n=0; n<nlLenA; n++)
dblAA[n] += 100.0;

// Commit the contents of the copy to the Java array reference
(*env)->SetDoubleArrayRegion(env, dblA, 0, nLenA, dblAA);

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Sample C code to manipulate arrays (continued):

// Access the double array directly

jboolean bCopyA;

jdouble* pdblA = (*env)->GetDoubleArrayElements(env, dblA,
&bCopyA) ;

if (pdblA)

{
jdouble* pdbl = pdblA; // retain for deallocation

for (n=0; n<nLenA; n++)
*pdbl++ += 10000.0;

// @ => copy back and release native array:
(*env)->ReleaseDoubleArrayElements(env, dblA, pdblA, ©0);

The &bCopyA parameter is optional (can be NULL):

bCopyA == INI_TRUE => pdblA will point to a copy of the array
bCopyA == JNI_FALSE => pdblA will point to the original array

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

 Sample C code to manipulate arrays (continued):

jfloatArray fC = (*env)->NewFloatArray(env, nLenB);
if (fC)

{

jboolean bCopyB;

jfloat* pfB = (*env)->GetFloatArrayElements(env, fB, &bCopyB);
if (pfB)

{

jboolean bCopyC;

jfloat* pfC = (*env)->GetFloatArrayElements(env, fC, &bCopyC);
if (pfC)

{
jfloat* pfb = pfB, pfc = pfC + nLenB;
for (n=0; n<nLenB; n++)
*--pfc = *pfb++;
(*env)->ReleaseFloatArrayElements(env, fC, pfC, 0);
}
(*env)->ReleaseFloatArrayElements(env, fB, pfB, INI_ABORT);
}
} // JINI_ABORT => release but do not copy back
return fC; // INI_COMMIT => copy back but do not release

// © => release and copy back
Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Remember, the original arrays were:

double[] dblA = {1.1, 2.2, 3.3};
float[] fB = {4.4f, 5.5Ff, 6.6f, 7.7f};

e The corresponding output is:

dblA:
10101.1
10102.2
10103.3
B: fC:
4.4 /.7
5.5 6.6
6.6 5.5
/7.7 4.4

e Ifyouneed to discard an array created with New<TYPE>Array, use
DeletelLocalRef

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Accessing Java Methods and Fields from C/C++

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Method and Field Descriptors

e Accessing Java Class Members

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Method and Field Descriptors

e To access Java methods and fields from C/C++ we need to identify each
member unambiguously by specifying their signatures and data types

e javah com.cogentlogic.training.jni.Arrays seen earlier,
generated more that the native method prototype:

JNIEXPORT jfloatArray JINICALL
Java _com_cogentlogic training jni_Arrays_traverse

(JNIEnv *, jobject, jdoubleArray, jfloatArray);
it also produced:

Signature: ([D[F)[F
e [D,[F, [F are descriptors, here indicating arrays of double and float

e Descriptors enable us to specify Java methods and fields

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The Java class file disassembler, javap, produces class member signatures

e (Consider this Java class: (MethodsAndFields)

public class MethodsAndFields

{
private static int s n = 123;
private int m n = 456;

private static void setS(int n) {s_n = n; }
private void setI(int n) {m n = n;}

private native static int mafS(int n);
private native int mafI(int n);

public static void main(String[] args)

{

System.out.println("mafS(2) returns " +
MethodsAndFields.mafS(2) +
" with s n = " + MethodsAndFields.s n);
MethodsAndFields maf = new MethodsAndFields();
System.out.println("mafI(3) returns " + maf.mafI(3) +

with mn =" + maf.m n);

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The -p option indicates include private members

e The -s option indicates show signature (that’s what we're interested in!)

javap -p -s com.cogentlogic.training.jni.MethodsAndFields

produces:
private static int s _n; Signature: I
private double m _dbl; Signature: D
public com.cogentlogic.training.jni.MethodsAndFields();
(constructor) Signature: ()V
private static void setS(int); Signature: (I)V
private void setI(double); Signature: (D)V
private static native int mafS(int); Signature: (I)I
private native double mafI(double); Signature: (D)D

public static void main(java.lang.String[]);
Signature: ([Ljava/lang/String;)V

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Accessing Java Class Members

 Sample C code to access a static method and a static field:
(MethodsAndFields)
JNIEXPORT jint JNICALL
Java_com_cogentlogic training jni_MethodsAndFields mafS(
JNIEnv* env, jclass clazz, jint n)

{
jfieldID idFieldS = (*env)->GetStaticFieldID(env, clazz,

"S_n", IIIII);
jint s n = (*env)->GetStaticIntField(env, clazz, idFieldS);

jmethodID idMethodS = (*env)->GetStaticMethodID(env, clazz,
IlsetSIl,

II(I)V");
(*env)->CallStaticVoidMethod(env, clazz, idMethodS, s n + n);

return (*env)->GetStaticIntField(env, clazz, idFieldS) + 1;

¥

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

« Sample C+ code to access an instance method and field:
(MethodsAndFields)
#ifdeft cplusplus
extern "C" {
#endif

JNIEXPORT jdouble IJINICALL
Java_com_cogentlogic training jni_MethodsAndFields mafI(
JNIEnv* env, jobject thiz, jdouble dbl)

jclass clazz = env->GetObjectClass(thiz);
jfieldID idFieldI = env->GetFieldID(clazz, "m dbl", "D");
jdouble m_dbl = env->GetDoubleField(thiz, idFieldI);

jmethodID idMethodI = env->GetMethodID(clazz, "setI", "(D)V");
env->CallVoidMethod(thiz, idMethodI, m dbl + dbl);

return env->GetDoubleField(thiz, idFieldI) + 10000.0;
}

#ifdef cplusplus

}
#endif

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Exception Handling

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Throwing Exceptions from Native Methods

e (atching Exceptions in Native Methods

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Throwing Exceptions from Native Methods

 Native C++ methods might have C++ exceptions to deal with. We
assume that this is handled by the C++ developer. Here we are
concerned only with Java exceptions!

e In project Arrays, we saw code the checked for out-of-memory
conditions but did not handle them well e.g.

jdouble* pdblA = (*env)->GetDoubleArrayElements(env, dblA, 0);
if (pdblA)
{

// Memory allocated so proceed...

A better way to handle this condition would to throw an appropriate
Java exception, 1.e. java.lang.OutOfMemoryError
(this not an exception that we normally catch in Java but it handles the
GetDoubleArrayElements condition well)

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e [fwe need to throw an exception from a native method we do it by calling
ThrowNew, passing a jclass object for the desired Java exception, e.g.

jclass clazz = (*env)->FindClass(env,

"java/lang/OutOfMemoryError");
if (clazz)
(*env)->ThrowNew(env, clazz, chMsg);

e [tisimportant to realize that calling ThrowNew does not generate an
exception in the native method: the native method continues to run to

completion and should degrade gracefully, freeing resources, etc.

 The Java code should catch the exception in the usual way, of course, e.g.

try (ExceptionThrowFrom]NI)
{ float[] fC = etfj.mightThrow(dblA, B);

iatch (OutOfMemoryError except)

{ except.printStackTrace();

¥

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Catching Exceptions in Native Methods

e A native method could invoke a Java method that throws an exception

e The native method can catch the exception by making an
ExceptionOccurred call to check whether an exception was thrown!

 Sample Java code that throws an exception: (ExceptionCatchIn/NI)

void dodgyCode() throws ClassCastException

{
Object objInteger = new Integer(666);

System.out.println((String)objInteger);
}

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Sample C code that ‘catches’ a Java exception: (ExceptionCatchIn/NI)

jclass clazz = (*env)->GetObjectClass(env, thiz);
jmethodID idDodgy = (*env)->GetMethodID(env, clazz,
"dodgyCode", "()V");

(*env)->CallVoidMethod(env, thiz, idDodgy);

jthrowable except = (*env)->ExceptionOccurred(env);

if (except)

{
(*env)->ExceptionDescribe(env);
(*env)->ExceptionClear(env);

// Handle exception, e.g. scrutinize the jthrowable object
// to determine the type of exception

/] ...

(*env)->Throw(env, except);
(*env)->DeletelLocalRef(env, except);

¥

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

SWIG

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Whatis SWIG?
e Installing SWIG

e SWIG Use

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

What is SWIG?

e Simplified Wrapper and Interface Generator (SWIG) is a tool that
facilitates access to C/C++ libraries from other languages such as Java

 SWIG takes an interface file (.i file extension) as input

e Interface files are just C/C++ header files will SWIG preprocessor
directives, specically:

e SWIG module declaration, e.g. %module Maths
e Section to be copied into a C wrapper file (not parsed by SWIG)
e Section parsed by SWIG to generate the remaining output

e For more on SWIG, see www.swig.org

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

http://www.swig.org
http://www.swig.org

Installing SWIG

e On Mac OS X, typically install SWIG using Homebrew:

e Install Homebrew by running the script shown at:
mxcl.github.io/homebrew/

e.g. ruby -e "$(curl -fsSL https://raw.github.com/mxcl/
homebrew/go)"

e [nstall SWIG by entering: brew install swig
e On Linux (Ubuntu), enter: sudo apt-get install swig

e On Windows, download SWIG in a ZIP file from www.swig.org/
download.html, extract it and add its location to the PATH variable

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

https://raw.github.com/mxcl/homebrew/go
https://raw.github.com/mxcl/homebrew/go
https://raw.github.com/mxcl/homebrew/go
https://raw.github.com/mxcl/homebrew/go

SWIG Use

e First, create an interface file, e.g.
%»module Maths

// This added to the C wrapper file (not parsed by SWIG)
%1

// Put includes and other declarations here

extern int fibonacci(int);

%}

// This parsed by SWIG to generate the three output files
extern int fibonacci(int);

e Nextrun the SWIG tool against the interface file, e.g.

swig -java -package com.cogentlogic.training
-outdir src/com/cogentlogic/training
jni/swiginterface.1

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The three files generated from the previous command are:
e src/com/cogentlogic/training/Maths. java
e src/com/cogentlogic/training/MathsINI. java
e jni/swiginterface wrap.c

e The module was specified as Maths, remember

e MathsINI.java simply declares the native method in a Java class
package com.cogentlogic.training;

public class MathsJNI
{

public final static native int fibonacci(int jargl);

¥

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Maths.java contains sample code for making use of MathsJINI. java:
package com.cogentlogic.training;

public class Maths

{
public static int fibonacci(int argo)
{
return MathsINI.fibonacci(argo);
}
}

e swiginterface wrap.c contains a good deal of SWIG code that we can
ignore; it also contains the declarations made in the interface file and a
skeleton JNI method with a suitable name, e.g.

extern int fibonacci(int);

SWIGEXPORT jint IJINICALL
Java_com_cogentlogic training MathsINI_ fibonacci(
JNIEnv *jenv, jclass jcls, jint jargl)

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The skeleton native method contains: (SWIG)
jint jresult = 0 ;
int argl ;
int result;
(void)jenv;
(void)jcls;
argl = (int)jargl;
result = (int)fibonacci(argl);
jresult = (jint)result;
return jresult;

e We see typical extraneous code that is symptomatic of a tool that is
capable of handling complex scenarios!

e All we need to do is implement fibonacci in C, typically in another
source code file e.g. in Fib. c (with a header file Fib.h)

int fibonacci(int n)
{ return n <=1 ? n : fibonacci(n - 1) + fibonacci(n - 2); }

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e To use the SWIG output:

e (reate aJava project with C/C++ conversion, specifying header path(s)
and referencing the Debug folder in the Java Build Path

e Add ajnifolder and add a SWIG interface file to the jni folder
e Add suitable declarations to the interface file
e Run the SWIG tool (this could be automated within the project)

e Provide implementations for the JNI methods declared in the SWIG
wrapper file

e Make use of the native methods in your Java code

e Build the project and check the library name so it can be loaded ...

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

[Package Explorer 53 g ‘

I [gArrays
> IDJv ExceptionCatchin)NI
> [E‘Jv ExceptionThrowFromJNI
I= IEJ Maths
> IEJ MethodsAndFields
> IEJ Strings
¥ 25 SWIG
¥ (B src
v £} com.cogentlogic.training
» [J] Maths.java
» [J] Maths)NI.java
» [J] Swig.java
» =) JRE System Library [JavaSE-1.7]
¥ (= Debug
P (= jni
libSWIG.dylib
_ & makefile
_ @ objects.mk

| @ sources.mk

1c| swiginterface_wrap.c
[swiginterface.i

~

= O J] Swig.java 22 |[J] Maths.java swiginterface.i h| M

package com.cogentlogic.training;

public class Swig

{
< static
{
System. loadLibrary("SWIG");
}
- public static void main(String[] args)
{
System.out.println(Maths. fibonacci(30));
}
}

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Using Standard C/C++ Libraries
and
Open Source Libraries

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Standard C/C++ Libraries
e Open Source Libraries

e OpenSSL

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Standard C/C++ Libraries

e (C/C++ compilers usually support standard libraries for i/o, strings,
maths, etc., e.g. C++ Standard Template Library

 Resolving standard libraries is system-dependent, e.g. to support
string.h on Mac OS X, add to Paths and Symbols:

/System/Library/Frameworks/Kernel.framework/Headers

VYC/C++ General
» Code Analysis
Documentation

File Types # Symbols | mjLibraries = (= Library Paths | (£ Source Location | L] References |
Formatter
Indexer . 'Languages " Include directories
:::suzgz ':ar:g::fs Assembly @ /System/Library/Frameworks/JavaVM.framework/Versions/A/Headers
¥ CGNUC B /System/Library/Frameworks/Kernel.framework /Versions/A/Headers
Preprocessor Include Pat GNU C++

Iawma Ruild Dath

e See the sample code (StdLib)

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The Linux installation automatically picks up the header paths ...

X Properties For StdLib

€1

> Resource
Builders
» C/C++ Build
v C/C++ General
> Code Analysis
Code Style
Documentation
File Types
Indexer
Language Mappings
Paths and Symbols
Java Build Path
> Java Code Style
> Java Compiler

[lmsem FAdiba-~

Paths and Symbols

Configuration: | Debug [Active] -

4

(=Includes # Symbols =hLibraries @®LibraryPaths (©BSource Location g]Reference

Languages Include directories
Assembly (= fusr/lib/jvm/java-7-oracle/include
m (= fusr/lib/jvm/java-7-oracle/include/linux
GNU C++ #® /usr/lib/gcc/x86_64-linux-gnu/4.6/include

#® Jusr/local/include

& Jusr/lib/gcc/x86_64-linux-gnu/4.6/include-fixed
(#® Jusr/include/x86_64-linux-gnu

Jusr/include

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The Windows installation automatically picks up the header paths ...

type filter text Paths and Symbols
» Resource
Builders
» C/C++ Build Configuration: |Debug [Active]

a4 C/C++ General
» Code Analysis

Documentation (= Includes | # Symbols | =i Libraries | (B Library Paths | (2 Source Location |] References
File Types

Formatter Languages Include directories

Indexer Assembly (! C:\Program Files (x86)\Java\jdk1.7.0_21\include

Language Mappings GNU C @C:\Program Files (x86)\Java\jdk1.7.0_2 1\include\win32
Paths and Symbols GNU C++ (& c:/mingw/lib/gcc/mingw32/4.6.2/include

Preprocessor Include P:
Java Build Path
» Java Code Style
» Java Compiler
» Java Editor
Javadoc Location

& c:/mingw/include
(& c:/mingw/lib/gcc/mingw32/4.6.2/include-fixed

Project References
Run/Debua Settinas

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Open Source Libraries

 Perhaps the most significant benefit of using the Java Native Interface
is that it enables us to make use of a whole host of open source and
business C/C++ libraries

e Boost provides a collection of libraries that are typically used as
source code, rather library files; see:

http://www.boost.org

e (OpenSSL, available from www.openssl.org, provides a great C library
for use across all platforms

e Libraries can be linked statically, using . a files, or dynamically,
using .o files

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

OpenSSL

e To use OpenSSL, download the compressed file from:

www.openssl.org/source e.g. openssl-1.0.1le.tar.gz

e Extract this file then build it from a command prompt be entering:

e ./config shared (just./config for static libraries)

e sudo make
Ensure that there are

e sudo make install no spaces in the path!

e On Ubuntu, OpenSSL will be installed in /usr/local/ssl/ as:

e 1ib folder containing two library files,
e.g. libcrypto.so.1.0.0and 1libssl.s0.1.0.0

e include folder containing header files

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e For System.loadLibrary to identify the library files, rename

libcrypto.so.1.0.0and libssl.so0.1.0.0 by removing the trailing
.1.0.0

e Touse OpenSSL in a JNI project, create a project in the usual way, with
simple C/C++ and Java place-holder source code, and build it to produce
the a library file in the Debug folder, then:

e To the Debug folder, copy the renamed libcrypto.soand libssl.so
files

e To the jni folder, copy the OpenSSL include folder, probably
renaming it to openssl, for instance

e Tell the linker to make use of both crypto and ss1 libraries

by adding them to Libraries (-1) under C/C++ Build, Settings,
GCC C++ Linker, Libraries

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Properties for OpenSSL

| Settings

> Resource
Builders
v C/C++Build
Build Variables

Configuration: | Debug [Active] -

1

® Tool Settings | #Build Steps Build Artifact | @ Binary Parsers @ Error Parsers

Discovery Options
Environment v i GCC C++ Compiler Libraries (-l)
Logging &3 Preprocessor
Settings & Includes ssl
Tool Chain Editor 2 Optimization
> C/C++ General ¢ Debugging
Java Build Path ¢ warnings
> Java Code Style & Miscellaneous
> Java Compiler v ¥ GCC C Compiler
> Java Editor 2 Preprocessor
Javadoc Location 2 symbols
Project References 2 Includes k
Refactoring History ¢ Optimization
Run/Debug Settings 2 Debugging

2 warnings Library search path (-L)

& Miscellaneous
v ¥ GCC C++Linker

2 General

¢ Libraries

& Miscellaneous

& Shared Library Settings
v ¥ GCC Assembler

2 General

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e The projectis constructed like this:

i Package Explorer &3

> Maths Do not add the path to the openssl
include folder to the Paths and
v # com.cogentlogic.training.jni SymbOlS llbrary SettmgS'
> [3] OpensSL.java Doing so would make them available
> =) JRE System Library [JavaSE-1.7] using;
¥ = Debug #include <rand.h>
> = jni

but this could conflict with the system’s
version of OpenSSL (remember that
system paths are already included in

libcrypto.so
libOpenSSL.so

libssl.so _ _
5 makefile the library settings).
L objects.mk Instead, we can use:
L& sources.mk #include "openssl/rand.h"
Y & jni . .
L‘f_J & and there will be no confusion.
> (= openssl

.c) OpenSSL.c

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e To make use of the two OpenSSL libraries plus our own library:

static

{
System.loadLibrary("crypto");

System.loadLibrary("ssl");
System.loadLibrary("OpenSSL");

}

e Inthe C/C++ source code, include the desired OpenSSL header files and
make the desired library calls

e Build and debug/run as usual

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Sample Java code making use of OpenSSL through JNI: (OpenSSL)

public native byte[] encryptSymmetric(byte[] bytesPlain,

byte[] bytesKey, byte[] bytesIV);
public native byte[] decryptSymmetric(byte[] bytesCipher,

byte[] bytesKey, byte[] bytesIV);

public static void main(String[] args)
{
byte[] bytesKey = new byte[32];
byte[] bytesIV = new byte[16];
String strPlainMessage =
"The quick brown fox jumped over the lazy dogs!";

OpenSSL openSSL = new OpenSSL();
byte[] bytesCypher = openSSL.encryptSymmetric(
strPlainMessage.getBytes(), bytesKey, byteslIV);

System.out.println(Arrays.toString(bytesCypher));
byte[] bytesRecovered =

openSSL.decryptSymmetric(bytesCypher, bytesKey, bytesIV);
String strRecovered = new String(bytesRecovered);
System.out.println(strRecovered);

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e In C, we have two native methods:

#include <stdlib.h> // for malloc and free
#include <string.h> // for strcpy

#include <jni.h>

#include "openssl/rand.h"

#include "openssl/evp.h"

JNIEXPORT jbyteArray JNICALL
Java_com_cogentlogic training jni OpenSSL_encryptSymmetric(
JNIEnv* env, jobject thiz, jbyteArray bytesPlain,
jbyteArray bytesKey, jbyteArray bytesIV)

{//...}

JNIEXPORT jbyteArray JNICALL
Java_com_cogentlogic training jni OpenSSL_decryptSymmetric(
JNIEnv* env, jobject thiz, jbyteArray bytesCipher,
jbyteArray bytesKey, jbyteArray bytesIV)

{//...}

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Extract from the C implementation in the sample project OpenSSL:

// Encrypt
int nCipherLenl;

int nCipherlLen2;

EVP_CIPHER CTX ctx;
EVP_CIPHER CTX_ init(&ctx);

EVP_EncryptInit(&ctx, EVP aes 256 cbc(),
(unsigned char*)pbyteKey,
(unsigned char*)pbytelV);

EVP_EncryptUpdate(&ctx, bytesCipherBuffer,
&nCipherlLenl,
(unsigned char*)pbytePlain,
nLenPlain);

EVP_EncryptFinal(&ctx, bytesCipherBuffer + nCipherlLenl,
&nCipherlLen2);

EVP_CIPHER_CTX_cleanup(&ctx);

int nCipherLen = nCipherLenl + nCipherLen2;

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

JNI with the Android NDK

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Android NDK
e Android NDK Installation
e Making Use of Native Code

e JNI Code

e Sample Android App with Native Code

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Android NDK

e The Android Native Development Kit is a toolset that enables Android
apps to use native code, i.e. compiled C and/or C++ (machine code)

e The NDK supports four instruction sets:
e ARMVSTE and ARM v7-A
e MIPS
e X386

e Any one, two, three or all four instruction sets can be included in a
single application package (.apk file)

e Android 1.5 (and later) apps can make Java Native Interface (JNI) calls
into C and C++ code; Android 2.3 apps can make use of native activities

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Android NDK Installation

e The Android NDK can be downloaded as a ZIP file from:
developer.android.com/sdk/ndk

e Extract the ZIP file to a convenient location, referred to hereafter as
<NDK>

e The documentation is found in <NDK>/docs
¢ (Check out OVERVIEW.html

e Platform-specific installation notes can be found in INSTALL . html,

e.g. Windows requires the use of Cygwin 1.7 (Linux tools on Windows)
with development tools in Devel ...

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Download and install Cygwin from cygwin. com

e C(lick Default along side the Devel package to change it to Install
(for Devel, the default is that it isn't installed!)

=

Select Packages
Select packages to install

Search || Clear (" Keep Cur (" Exp View | Category
Category Current New Bin? Src? ﬂ
B All £ Default

Accessibility £¥ Default
Admin &¥ Default
Archive &¥ Default
Audio &¥ Default
Base &¥ Default
Database &¥ Default
B Devel £¥ Install

1021 |

£¥5.6.36-1 |

L1170 573 M M

J o
[v Hide obsolete packages
< Back Net> | Can

Installation takes

Copyright © 2013 Cogent Logic Ltd.

a long time!

Sunday, 16 June 13

e To test the Cygwin installation, open a bash shell and enter make -v

RI=TEY
make -v
NU Make 3.82.90 b

uilt for i686—pc—cyguwin
opyright <(C> 20818 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.
There is NO WARRANTY. to the extent permitted by law.

F

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Making Use of Native Code

e Native code is typically held in a subdirectory of an Android project,
called jni

e To describe the C/C++ code, a build script called Android.mk is
created in <project>/jni/ — see ANDROID-MK.html

 To target more than one system, a configuration file called
Application.mk — see APPLICATION-MK.html

e Build native code by opening a command prompt at the jni directory
and entering <ndk>/ndk-build (use ndk-build clean to remove
defunct object code from previous builds)

e Then, build the Android app in the usual way and the native code will
be included in the application package, . apk, file

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e (C/C++ code can make use of <math.h> plus other libraries and can
access native Android APIs — see STABLE-APIS.html

e Declare the main C/C++ source code files, grouped as shared libraries,
in Android.mk but do not declare header files for C code (C++ will need

headers files for class declarations)!

e Ifandroid:debuggableis truein AndroidManifest.xml, then
debuggable object files will be generated

e Debug requires Android 2.2 or higher

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Sample Android App with Native Code

e Sample C code: (MyLogic —Maths.c)
#include <jni.h>

int fib(int n)

{
return n <=1 ? n : fib(n - 1) + fib(n - 2);

¥

JNIEXPORT jint JNICALL
Java_com _cogentlogic training jni_MainActivity fibonacci(
JNIEnv* penv, jobject obj, jint n)
1

return fib(n);

¥

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Sample C++ code: (MyLogic —Greet.cpp):

##include <jni.h>
#include "Greet.h"

static const char s _chGreeting[] = "Hello from native C++, ";

const char* Greet::getGreeting()

{

return s_chGreeting;

¥

#ifdef cplusplus
extern "C" {
#endif

JNIEXPORT jstring JINICALL
Java_com_cogentlogic training jni MainActivity greeting(
JNIEnv* env, jobject obj, jstring strName)

1
/] ...

}
#ifdef cplusplus

}
#endif

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Java_com_cogentlogic training jni MainActivity greeting
implementation:

Greet greet;

char chBuffer[100];

char* pDest = chBuffer;

const char* pSrc = greet.getGreeting();
while ((*pDest++ = *pSrc++))

J

const char* pchName = env->GetStringUTFChars(strName, 0);
if (!pchName)
return 0; // out of memory
--pDest;
pSrc = pchName;
while ((*pDest++ = *pSrc++))

J
*pDest = 0O;
*--pDest = '1';
env->ReleaseStringUTFChars(strName, pchName);

return env->NewStringUTF(chBuffer);

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e (alling C and C++ functions from Java requires a library to be created:

e Sample Android.mk:
LLOCAL _PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE .= MyLogic
LOCAL SRC _FILES := Greet.cpp Maths.c
include $(BUILD SHARED LIBRARY)

e Sample Application.mk:

APP _PLATFORM := android-7
APP_ABI := all

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e To compile C/C++ libraries o Mac OS X and Linux, open a command
prompt at the jni folder and enter ndk-build:

jeffmacbookpro:jni Jeff$ ndk-build

Compile++ thumb
Compile thumb
SharedLibrary
Install
Compile++ thumb
Compile thumb
SharedLibrary
Install
Compile++ x86
Compile x86
SharedLibrary
Install
Compile++ mips
Compile mips
SharedLibrary
Install

: MyLogic <= Greet.cpp

: MyLogic <= Maths.c
: 1libMyLogic.so
: libMyLogic.so => libs/armeabi-v7a/libMylLogic.so

: MyLogic <= Greet.cpp

: MyLogic <= Maths.c
: 1libMylLogic.so
: 1libMylLogic.so => libs/armeabi/libMylLogic.so

: MyLogic <= Greet.cpp

: MyLogic <= Maths.c
: libMyLogic.so
: 1libMyLogic.so => libs/x86/1ibMyLogic.so

: MyLogic <= Greet.cpp

: MyLogic <= Maths.c
: libMyLogic.so
: libMyLogic.so => libs/mips/libMylLogic.so

 Ensure that there are no spaces in the path to the lib folder
Refresh your Android project to see the newly generated files

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e To compile C/C++ libraries from Cygwin, for a project called MyLogic
held on disk at D: \workspace\, first switch to the jni subdirectory with:

cd /cygdrive/d/workspace/MyLogic/jni

e For an NDKinstallation in C:\android-ndk-r7c\, invoke the compiler
with:
/cygdrive/c/android-ndk-r7c/ndk-build

File Edit Run Source Navigate Search Project Refactor !

e To view the results of the compilation [4 882|880 3
: . . 1% Package Explorer 53 =S
in Eclipse, refresh Package Explorer: i |

- o
= src New 4
E B &+ Go Into
g + Open in New Window
7 ger open Type Hierarchy F4
L
2 J%] Show In Alt+Shift+W »
---- j = Copy Ctrl+C
, € 5= Copy Qualified Name
B Anc < paste Ctrl+v
?ﬁ i ¥ Delete Delete
& bin Buid Path 4
L}‘ res Source Alt+Shift+5 »
<1 Anc Refactor Alt+Shift+T »
D pro
B pro 2y Import...
2y Export...
" Refresh F5 |
Close Project

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

r

v

| [Package Explorer &3 ‘ = ¥ =8

v == MyLogic
v #Bsrc
v £ com.cogentlogic.training.jni APP_ABI ‘= all 1In Application.mk

» [J] MainActivity.java

> &5 gen [Generated Java Files] results in the four object targets of
» =, Android 4.2.2 . . .
» =i Android Dependencies armeabi, armeabi-v7a, mips and x86
&, assets
> El—}bin
¥ (= jni
. @ Android.mk
@ Application.mk
.c) Greet.cpp
.c) Greet.h
.| Maths.c
v %'ibs
¥ (= armeabi
a libMyLogic.so
¥ [~ armeabi-v7a
@ libMyLogic.so
¥ (&= mips LOCAL _MODULE := MylLogic In Android.mk
a libMyLogic.so _
v (= x86 results in the libraries 1ibMylLogic.so
a libMyLogic.so
3 android-support-v4.jar
» (= obj
> Ea/_—}res
1) AndroidManifest.xml
{@ ic_launcher-web.png
proguard-project.txt

project.properties Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e« Sample Java code: (MyLogic — MainActivity.java):
public class MainActivity extends Activity

{
static { System.loadLibrary("MyLogic"); }

public native String greeting();
public native int fibonacci(int n);

@Override
public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

// Call C++ and C

TextView tv = new TextView(this);
tv.setText(greeting("Android "+ fibonacci(30)));
setContentView(tv);

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

O A b 5D @ 6:52am

Hello from native C++, Android 832040!

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Using Native APIs

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e Native APIs

e Android Logging API

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Native APIs

e JNI provides a way for us to make use of the native platform that Java
is supposed to dispense with!

 Android explicitly expose useful system components for access
through JNI

e For details, see: <NDK>/docs/STABLE-APIS.html

 Note: the libraries that implement the system APIs are pre-installed on
the host system, of course!

e We will look at native logging that makes use of the /system/1ib/
liblog.so library

e Android.mk references the logging library with LOCAL_LDLIBS := -

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Android Logging API

e To make use of the Android logging API, follow these steps:
e C(reate an Android project and convert it for C/C++ use:

e Selectthe Specific project type of Makefile project and
select -- Other Toochain --

@ Specify project type

Project type: Toolchains:
(= Executable -= Other Toolchain =~
(= Shared Library Android GCC
(- Static Library MacOSX CGCC

(= Makefile project

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Reference the Android header files:

<NDK>/platforms/android-8/arch-arm/usr/include

in the usual place under Paths and Symbols

i® Includes # Symbols = m Libraries = (= Library Paths (£l Source Location [;_*;_}Output Location @ Referer

Languages Include directories
Assembly i /Development/Android /android-ndk-r8e/platforms/android-8/arch-arm/usr/include
CNU C
CNU C++

e In the project’s Properties, select the C/C++ Build category,
Builder Settings, clear the Use default build command checkbox

and enter ndk-build; then, on the Behaviour tab, along-side Build
(Incremental build), clear the all entry:

Builder Workbench Build Behavior
Builder type: I YT Workbench build type: Make build target:
T e e T e — || Build on resource save (Auto build) all

Note: See Workbench automatic build preference
Build command: ndk-build

@ Build (Incremental build)
Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e Also,under C/C++ Build, select the Environment category then
add a PATH environment variable that references the NDK
(so ndk-build can be found):

usr/bin:/bin:/usr/sbin:/sbin:/Development/
Android/android-ndk-r8e

Environment variables to set

Variable Value Origin

CwWD /Jeff/INI_Training/SampleCode/MacOSX/AndroidWorkspace/Logr/ BUILD SYSTEM
Jusr/bin:/bin:/usr/sbin:/sbin:/Development/Android/android-ndk-r8e |[USER: CONFIG | |
PWD /Jeff/INI_Training/SampleCode/MacOSX/AndroidWorkspace/Logr/ BUILD SYSTEM

e Adda jni folder to the project and create the following files there:
e Android.mk
e Application.mk
e Logging.c

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e To Android.mk, add:

LOCAL_PATH := $(call my-dir)
include $(CLEAR VARS)

LOCAL MODULE := Logging
LOCAL _SRC FILES := Logging.c
LOCAL LDLIBS := -1llog

include $(BUILD SHARED LIBRARY)
e To Application.mk, add:

APP_PLATFORM := android-7
APP_ABI := armeabil

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e TolLogging.c, add:

#include <jni.h>
#include <android/log.h>

JNIEXPORT void IJINICALL
Java_com_cogentlogic training jni MainActivity log(
JNIEnv* env, jobject thiz, jstring strMsg)

{
__android_log_ write(ANDROID_LOG_ERROR, "L3JC",

"on call tsx state");
const char* pchMsg = (*env)->GetStringUTFChars(env,
strMsg, 0);
if (pchMsg)
!
int nThing = 123;
__android log print(ANDROID LOG INFO,
"LIC", "%s : %d\n", pchMsg, nThing);
(*env)->ReleaseStringUTFChars(env, strMsg, pchMsg);

¥

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e In the Android activity, load the library, declare the native method and
invoke the native method:

static

{
System.loadLibrary("Logging");

}

private native void log(String strMsg);

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

log("LCI");
}

e The output will appear in ADT’s LogCat, e.g.

06-12 15:27:54.298: E/LJC(6178): on _call tsx state
06-12 15:27:54.298: I/LJC(6178): LCJ : 123

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

Java Native Interface
with
Eclipse and Android

Debugging Native Code in Eclipse

Jeff Lawson

Copyright © 2013 Cogent Logic Ltd.

Contents

e (C/C++ Debugging for Android

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

C/C++ Debugging for Android

e Android C/C++ debugging has been supported since API Level 9,
hence, specify android:minSdkVersion="9" in the manifest

e The android:debuggable attribute is required in the manifest’s
application element (ignore the warning--that’s just for Java!)

e To create debug support files in your project:

e Run the project in Debug mode

e Open acommand prompt at the project’s path

e Enter: ndk-gdb then exit with quit

e These files will be added to obj/local/armeabi :
app_process gdb.setup libc.so

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e We need to edit gdb.setup but we don’t want our changes to be
overwritten when ndk-gdb next runs!

e Copy gdb.setup and name the copy gdb2.setup to
e Open gdb2.setup and delete the line comprising: target remote :5039
e We now need to configure several project settings...
e Weneeda C/C++ debug configuration:
e From the Run menu, select Debug Configurations...
e Selectthe C/C++ Application category and click the New button

e Specify a name for the configuration and, on the Main tab, browse for
and set the path to obj/local/armeabi/app_process

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

- MO s -

Debug Configurations

Create, manage, and run configurations

MR ICE

type filter text

¥ [G] Android Application
Logr
MyLogic
J{:,'Android JUnit Test
Android Native Applicati
v @ C/C++ Application
'c |Logr Debug
[c |C/C++ Attach to Applic
[t |C/C++ Postmortem Det
[t |C/C++ Remote Applicat
CiC/C++ Unit
Java Applet
J]Java Application
Ju JUnit
@ Launch Group
E Remote Java Application

Filter matched 16 of 17 items

Name: l Logr Debug

><)= Arguments\'| i Environment\] ped Debugger\] B, Source\] = Common\]

C/C++ Application:

! /Jeff/INI_Training/SampleCode/MacOSX/AndroidWorkspace/Logr/obj/local /armeabi/app_process

| Variables... | | Search Project... | | Browse.. |
Project:
!Logr] [Browse... J
Build (if required) before launching
Build configuration: . Default s

@ Select configuration using 'C/C++ Application'

() Enable auto build () Disable auto build

@ Use workspace settings Configure Workspace Settings...

|

Using GDB (DSF) Create Process Launcher - Select other...' Revert

Apply

@

€ 2

Copyright © 2013 Cogent Logic Ltd.

Sunday, 16 June 13

e C(lick blue Select other..link at the bottom of the Main tab and
select the Standard Create Process Launcher option:

e OO0 Select Preferred Launcher

This dialog allows you to specify which launcher to use when multiple
launchers are available for a configuration and launch mode.

@ Use configuration specific settings Change Workspace Settings...

Launchers:

CDB (DSF) Create Process Launcher
Standard Create Process Launcher |

e On the Debugger tab, select the gdbserver debugger

e Setthe path to GDB debugger, e.g. /Development/Android/android-

ndk-r8e/toolchains/arm-linux-androideabi-4.7/prebuilt/darwin-
x86_64/bin/arm-1linux-androideabi-gdb

Copyright © 2011 Cogent Logic Ltd.

Sunday, 16 June 13

e Setthe path to GDB command line,
e.g. ...obj/local/armeabi/gdb2.setup

e On the Connection sub-tab, specify:
e Type: TCP
e Portnumber: 5039
e C(lick the Apply button and close the dialog

e Find the ndk-gdb file in the <NDK> and copy it with the name:
ndk-gdb-eclipse

e Openndk-gdb-eclipse and use # to comment-out the line:
$GDBCLIENT -x "native path $GDBSETUP"

Copyright © 2011 Cogent Logic Ltd.

Sunday, 16 June 13

e Finally, debug!:

e Seta breakpoint in your Java code

e Seta breakpoint in your C/C++ code

e Start the Android app in Debug mode

e When the app stops at the Java breakpoint:

Open a command prompt at the project’s folder
Enter the command: ndk-gdb-eclipse

From the Run menu, select Debug Configurations...
Select the named C/C++ Application configuration

Click the Debug button

e C(lick the Continue button in the Java debugger

e The debugger will stop at your C/C++ breakpoint

Copyright © 2011 Cogent Logic Ltd.

Sunday, 16 June 13

